
Roads Innovation Task Force

March 24, 2016

Mark A. Van Port Fleet, P.E., COO
Michigan Department of
Transportation

Public Act 175 of 2015

- Requires establishment of MDOT Roads Innovation Task Force (RITF)
- Requires RITF to produce comprehensive public report with specific requirements
- Release of funds after concurrent House & Senate resolution

Comprehensive Public Report

- Evaluates road materials & construction methods
- Focuses on materials that may cost more in up-front spending but produce life-cycle savings
- Strives to achieve a reduction of at least 50% in net present value 50-year life-cycle costs
- Focuses on longer-term time frames that maximize value to taxpayers on total cost basis
- Includes a plan to achieve these targets

Roads Innovation Fund

- Sets aside \$100 million annually until one-time concurrent resolution is passed by Legislature
- Money is then released through the Act 51 formula – four way split:
 - 10% to CTF
 - 39.1% to Counties
 - 21.8% to Cities/Villages
 - 39.1% to State Trunkline Fund

RITF Report

Three Major Sections in Report

- Evaluation of Materials & Processes
- Up-Front Investment to Reduce Life-Cycle Costs
- Longer-Term Time Frames
- Available at: www.michigan.gov/mdot

Evaluation of Materials & Processes

Vision Statement

MDOT will be recognized as a progressive & innovative agency with an exceptional workforce that inspires public confidence.

Tools Used for Evaluation

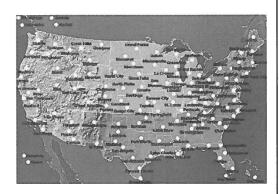
- New Materials Evaluation Procedure
- Pavement Demonstration Program
- Research Findings & Results
- National & International Studies

Pavement Demonstration & Research

- European Pavement Project
- HMA Perpetual Pavement
- Concrete White Topping
- Strategic Highway Research Program (SHRP)
- Long-Term Pavement Performance Program (LTPP)

Pavement Innovations

- Use of warm mix asphalt
- · Permissive use of recycled rubber in hot mix asphalt
- Allowance to use recycled asphalt shingles
- Longitudinal joint density specification
- Alkali silica reactivity (ASR) mitigation measures required for Portland cement concrete pavements
- Precast concrete pavement repairs to reduce mobility impacts
- Rapid set concrete pavement repairs to accelerate opening to traffic
- Stringless paving

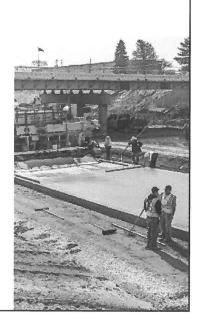

Up-Front Investment to Reduce Life-Cycle Costs

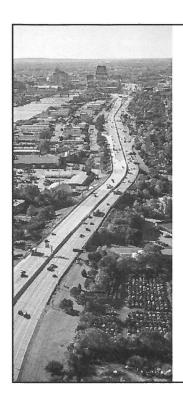
- No existing, proven maintenance-free pavement section
- Pavement management approach supported by Transportation Asset Management Council
- Solicited input on long-life pavements
- Noted potential pavement enhancements (long-life pavements)

National Perspective

- MDOT reached out to national experts:
 - Other DOTs
 - Universities
 - National & State Contracting Associations
 - National Pavement Experts

Hot Mix Asphalt (HMA) Improvements


(Long-Life Pavements)


- Mechanistic-Empirical Pavement Design Guide
 - Long-lasting HMA base
 - Renewable HMA surface
- Increased overall base/subbase thickness
- Enhanced:
 - Material requirements
 - Acceptance specifications
 - Construction requirements
 - Drainage requirements
- No utilities within roadbed
- Prohibit studded tires

Portland Cement Concrete Improvements

(Long-Life Pavements)

- Mechanistic-Empirical Pavement Design
- Jointed Plain Concrete Pavement (50-year service life) & Continuously Reinforced Concrete Pavement (75-year service life)
- Increased overall base/subbase thickness
- Enhanced:
 - · Material requirements
 - Acceptance specifications
 - · Construction requirements
 - Drainage requirements
- No utilities within roadbed
- Prohibit studded tires

Long-Life Pavement Costs

- Estimates based on:
 - Increased material costs
 - Increased pavement structure depth for 30- & 50-year design life
 - Enhanced acceptance & construction requirements
 - Potential utility & real estate acquisitions
- Each project is unique & may significantly increase costs (ROW, bridges, safety upgrades, utility relocations, etc.)

Pavement Costs

	20-Year	30-Year	50-Year	
	Design Life	Design Life	Design Life	
	(Current	(50-Year	(75-Year	
	Standard)*	Service Life)	Service Life)	
Estimated				
reconstruction cost	\$2M	\$3.7M	\$4.7M	
per lane mile				

Evaluating Potential Costs

In order to evaluate potential up-front investment for reducing life-cycle costs, a network analysis was performed to identify potential cost-savings.

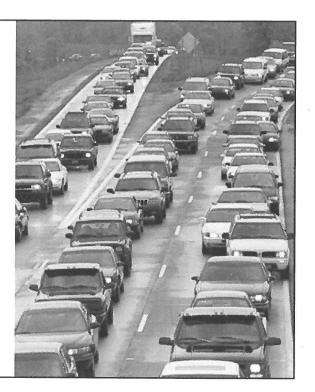
Potential Per Lane Mile Life-Cycle Cost Savings From Utilizing Enhanced Reconstruction Design Standards

50-Year Outlook: Potential Per Lane Mile Life-Cycle Cost Savings From Enhanced Reconstruction Design Standards				
	20-Year Design (Avg. 35-Year Service Life) (Current Standard)	30-Year Design (50-Year Service Life)	50-Year Design (75-Year Service Life)	
2016 Reconstruction Cost/Lane Mile	\$2,000,000	\$3,700,000	\$4,700,000	
50-Year Life-Cycle Cost/Lane Mile	\$8,164,750	\$4,231,500	\$5,410,000	
50-Year Life-Cycle Cost Savings/Lane Mile		\$3,933,250	\$2,754,750	
Additional Lane Miles of Rehabilitation Work from 50-Year Life-Cycle Cost Savings/Lane Mile of Initial Reconstruction		1.7*	1.2*	
2016 Lane Miles Reconstructed from \$300 million/yr. Investment in Long Life Pavements	150	81	64	
Total Additional Lane Miles of Rehabilitation Work from 50-Year Life-Cycle Cost Savings	N/A	138	77	

^{*}Additional rehabilitation work from cost-savings was calculated using a 50-year, inflation-adjusted average costs of \$2.3 million per lane mile.

Network Analysis

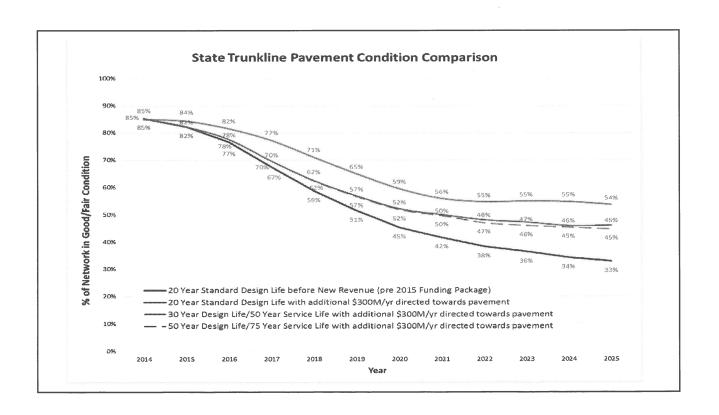
- Road Quality Forecasting System (RQFS) was used to perform analysis
- RQFS incorporates projected future inflation into modeling
- Some construction materials may inflate at different rates depending on national & international economic growth
- Primary materials (cement & petroleum products) have additional influences that may not trend with standard inflation rates
- Inflation rate for analysis: 4-4.5% is used for first six years & 4% is used thereafter


MDOT's 20-Year Current Meet & Sustain Strategy

- MDOT designs pavements for 20-year design life with service life of 33 to 37 years (based on historical in-service pavements)
- 90% good/fair pavement condition goal as approved by STC
- Based on "mix of fixes" of reconstruction, rehabilitation & capital preventive maintenance
 - Accepted nationally as most cost-effective way to maintain pavement network

Roads Innovation Goals

- No state highways in "poor condition"
- Reduce life-cycle costs by 50%
- Implement long-life pavement designs And...
- Analysis performed on scenario of an additional \$300 million/year investment for long-life pavement projects



The Cost of Long-Life Pavement

	20-Year Design Life (Current Standard)*	30-Year Design Life (50-Year Service Life)	50-Year Design Life (75-Year Service Life)
Estimated reconstruction cost per lane mile	\$2M	\$3.7M	\$4.7M
Estimated initial investment (first 10 years)	\$15B	\$111B	\$140B
Estimated 50-year costs	\$170B	\$129B	\$163B

^{*}Based on STC goal of 90% Good/Fair

Strategy	Annual Investment Needed First 10 Years	Additional Average Investment Needed Next 40 Years	Investment Needed to Maintain Condition Goal for Next 50 Years
20-Year Current Meet & Sustain	\$15B or \$1.5B/year	\$3.9B/year	\$170B or \$3.4B/year
30-Year Design Standards (50-Year Service Life)	\$111B or \$11B/year	\$450M/year	\$129B or \$2.6B/year
50-Year Design Standards (75-Year Service Life)	\$140B or \$14B/year	\$560M/year	\$163B or \$3.3B/Year

Longer-Term Time Frames

Improvements to HMA Pavements

- Regression of air voids to 3% to get more asphalt cement in mixture
- Implemented longitudinal joint density specification
- Only allow fine-graded mixes for top courses
- Use of softer binders for preventive maintenance projects
- Performed HMA Peer Review reviewing recommendations for implementation
 - Acceptance specifications
 - Construction practices
 - Mix design practices

Longer-Term Time Frames

Improvements to Concrete Pavements

- Reduce cementitious content requirements
- Well-graded aggregate mixes
- Use of supplemental cements
- Air content quality testing
- Use of wear-resistant epoxy coating on load transfer dowels
- Concrete permeability testing resistivity
- Curing requirements

Longer-Term Time Frames

- Continue to seek new materials, technologies & construction methods
- Utilize existing tools
- Adopt new tools & methods as they become available
- Incorporate actual performance data into analysis as it becomes available

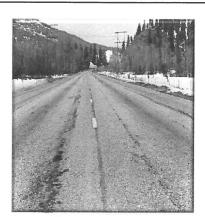
We can build Michigan pavements that last 50 to 75 years...

Savings can be recognized in future years. But...

Up-front costs will be substantial, too.

How costly?

Unanswered Questions


- Will today's drivers pay \$1.70/gallon in additional state gas tax to build a new road system to reduce future costs?
- Will we tolerate the building & tree removal needed for wider grades?
- Will the experimental designs really perform?
- Will roads designed in 2015 be adequate in 2065?

Necessary Legislative Changes

- Changes to life-cycle cost analysis law
- Statewide prohibition on use of studded tires
- Beneficial use of recycled materials vs. long-term performance

Questions?

			1
			*